01 Complex Numbers I

Calculator Free

1. [5 marks: 1, 2, 2]

[TISC]

Given the complex numbers $z_1 = 2 - i$, $z_2 = i$ and $z_3 = 2ai$, find:

- (i) $z_1 \overline{z_2}$
- (ii) $|z_1 + z_3|$
- (iii) arg $(\frac{z_3}{2az_2})$.

2. [5 marks: 1, 2, 2]

[TISC]

Let the complex numbers $z_1 = a + 2i$, $z_2 = 3$ and $z_3 = \sqrt{3} - i$.

- (a) Express the following in the form x + yi.
 - (i) z_1^2
 - (ii) $\frac{z_1}{z_3}$
- (b) Determine in **exact form** $arg(iz_2) + arg(z_3)$.

3. [7 marks: 2, 2, 3]

[TISC]

Let the complex numbers $z_1 = a - 2i$, $z_2 = 1 + i$ and $z_3 = -4i$, where a is a real number. Determine all possible values of a if:

(a)
$$z_1 \times z_2 = z_3$$

(b)
$$\frac{z_1}{z_3} = \frac{1}{2}z_2$$

(c)
$$arg(z_1) + arg(z_2) = -\frac{\pi}{4}$$
.

(a)
$$z_1 \times \overline{z_1} = 2 a^2$$

(b)
$$z_1 = i \ \overline{z_1}$$

4. (c) $Re(z_1^2) = Re(z_2^2)$

(d) $arg(z_1) = arg(\overline{z_1})$

5. [11 marks: 2, 3, 3, 3]

[TISC]

Let the complex numbers $z_1 = a + 5i$, $z_2 = 3 - 4i$ and $z_3 = 1 + i\sqrt{3}$ where a is a real number.

- (a) Find *a* if $|z_1| = |z_2|$
- (b) Find the exact value of a if $tan[arg(\overline{z_1})] = tan[arg(z_3)]$.
- (c) Explain clearly why there is no solution for a if $|z_1 z_2| = |z_3|$.
- (d) Find the value of a if $\mathbf{Im}\left(\frac{z_1}{z_2}\right) = 0$

6. [9 marks: 3, 3, 3]

The complex number z has a modulus of 2 and an argument of $\frac{2\pi}{3}$

(a) State the complex number z^4 in Cartesian form.

(b) State the complex number $\frac{z}{i}$ in *cis* form.

(c) Given that $w \times z = 2i$, determine the complex number w. Give your answer in polar form.

7. [7 marks: 2, 2, 3]

Let $u = a \operatorname{cis} \alpha$ and $v = a \operatorname{cis} \beta$ where a > 0 and α and β are acute. Express each of the following in cis form.

(a) $\frac{1}{\overline{u}}$

- 7. (b) $(\bar{v}uv)^8$
 - (c) $u + \overline{u}$

8. [11 marks: 3, 4, 4]

[TISC]

(a) Given that $4a - 4ai = r cis \theta$, find r and θ in terms of a > 0 where appropriate.

(b) Given that $r cis\left(\frac{-5\pi}{6}\right) = x + 5a i$, find r and x in terms of a < 0.

(c) Simplify $\left[\sqrt{3} cis\left(\frac{5\pi}{6}\right)\right]^3 \times \sqrt{3 cis\left(\frac{\pi}{4}\right)}$

9. [7 marks: 3, 4]

Let
$$x = cis \frac{\pi}{3}$$
, $y = \left(cos \frac{\pi}{8} + i sin \frac{\pi}{8}\right)$ and $z = -1 - 3i$.

(a) Find $\frac{xy}{z-2}$ giving your answer in polar form.

(b) Find $\sqrt{3} x + \sqrt{2} y^2 + z$ giving your answer in *cis* form.

- 10. [7 marks: 2, 5]
 - (a) Express $2\sqrt{3} cis\left(\frac{-\pi}{3}\right)$ in Cartesian (rectangular) form.

10. (b) Given $u + v = \sqrt{3} + i$ and $u - v = 2\sqrt{3} cis(\frac{-\pi}{3})$.

Determine the complex numbers u and v giving your answer in polar form.

11. [6 marks: 1, 2, 3]

Let
$$a = -1 + \sqrt{3} i$$
 and $b = -1 - i$.

- (b) Find ab in exact Cartesian form.
- (c) Find *ab* in exact *cis* form.

(c) Use your answers in (a) and (b) to find $\sin\left(\frac{\pi}{12}\right)$ in exact form.